На правах рукописи

ВОДОЛАГИНА НАТАЛЬЯ НИКОЛАЕВНА

РОЛЬ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ И МЕТАБОЛИЧЕСКИХ ФАКТОРОВ В РАЗВИТИИ ХРОНИЧЕСКОЙ ИШЕМИИ МОЗГА У БОЛЬНЫХ СТАРШИХ ВОЗРАСТНЫХ ГРУПП

14.00.53 – геронтология и гериатрия 14.00.13 – нервные болезни

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Москва – 2008

Диссертация выполнена в ФГУ «Российский геронтологический научно-клинический центр Росздрава» (директор – академик РАМН, профессор В.Н. Шабалин).
Научные руководители: доктор биологических наук Е.В. Терёшина доктор медицинских наук О.П. Сидорова
Официальные оппоненты: доктор биологических наук В.Л. Голубева
доктор медицинских наук, профессор О.С. Левин
Ведущая организация: Московский государственный медико-стоматологический университет
Защита диссертации состоится ""
С диссертацией можно ознакомиться в библиотеке ФГУ Российского геронтологического научно-клинического центра Росздрава.

Н.М. Соколова

Ученый секретарь диссертационного совета,

кандидат биологических наук

Общая характеристика работы

Актуальность темы

Цереброваскулярная патология занимает второе место в ряду основных причин смертности и инвалидизации населения в экономически развитых странах, что определяет ее как одну из важнейших медицинских и социальных проблем (Верещагин Н.В. с соавт., 2002). Смертность от цереброваскулярных болезней в России остаётся одной из самых высоких в мире и составляет 319,8 на 100 000 населения (Верещагин Н.В., Варакин Ю.Я., 2001). Заболеваемость инсультом в возрасте старше 55 лет удваивается с каждым десятилетием жизни (Виленский Б.С. 2000). В нашей стране неуклонно растет число пациентов с явлениями хронической ишемии головного мозга (ХИМ), составляя не менее 700 на 100 000 населения (Верещагин Н.В. с соавт., 2002). По данным Научного центра неврологии РАМН дисциркуляторная энцефалопатия занимает одно из ведущих мест, в структуре всех сосудистых поражений головного мозга у лиц старше 60 лет.

Разработка и внедрение всё новых и новых методов терапии инсульта уже не могут существенно улучшить показатели выживаемости и восстановления после мозговой катастрофы, в связи с чем становится очевидной необходимость поиска новых маркёров, которые позволяли бы выделять группы пациентов с высоким риском неблагоприятного течения ХИМ.

ХИМ относится к мультифакторным заболеваниям. В настоящее время все больше внимание уделяется изучению генетических и метаболических факторов развития хронической ишемии мозга и инсульта. Обращает на себя внимание, что в большинстве работ роль генов в развитии тяжести течения ХИМ изучается у больных только на примере инсульта. Несмотря на значительное число исследований связи генов с развитием инсульта остается нерешённым ряд вопросов. Так, наименее изучены сравнительные аспекты связи полиморфных вариантов генов липопротеинлипазы (LPL) и белка переносчка эфиров холестерина (СЕТР), контролирующих липидный метаболизм, с характером течения ХИМ, с липидным метаболизмом и с продолжительностью жизнью больных ХИМ. До настоящего времени недостаточно изучена взаимосвязь ХИМ с нарушениями липидного метаболизма, ожирения, метаболического синдрома и жирового гепатоза в зависимости от возраста.

Цель исследования:

Определить значимость генов липопротеинлипазы (LPL), белка-переносчика эфиров холестерина (СЕТР) и липидного метаболизма в развитии хронической ишемии мозга у пациентов старших возрастных групп.

Задачи исследования:

- 1. Изучить факторы риска и тяжесть течения ХИМ в разных возрастных группах.
- 2.Изучить полиморфизм генов липопротеинлипазы, белка-переносчика эфиров холестерина у больных с хронической ишемией головного мозга.
- 3.Выявить характерные особенности возрастных изменений липидного метаболизма у больных ХИМ.

- 4.Изучить связь аллельных вариантов генов и особенностей липидного метаболизма у больных с различными формами ХИМ (ХИМ I ст.; ХИМ II ст.; ХИМ III ст.), ишемическим инсультом (давностью более 1 года).
- 5.Определить особенности липидного метаболизма у больных ХИМ в зависимости от степени ожирения и сопутствующей патологии печени.
- 6. Выявить влияние метаболического синдрома на течение ХИМ и на продолжительность жизни пациентов старших возрастных групп.
- 7.Изучить липидкорригирующую активность, безопасность и переносимость симвастатина вазилипа у больных XИМ с дислипидемиями и с сопутствующим стеатозом печени (жировая дистрофия).

Научная новизна исследования

Выявлено, что у больных XИМ носительство аллеля H- гена LPL ассоциировано с благоприятным течением заболевания и долголетием. Генотип H+H+ гена LPL ассоциирован с риском развития OHMK.

Генотип B1B1 гена СЕТР ассоциирован с наследственной предрасположенностью к сердечно- сосудистым заболеваниям у больных XИМ, а генотип B2B2 - с долголетием.

Установлено, что сочетанная дислипидемия у больных XИМ в возрастной группе 60 - 74 лет может являться одним из факторов риска развития ОНМК.

Высокая частота встречаемости ожирения II степени, жирового гепатоза и метаболического синдрома в возрастной группе 60 - 74 лет может быть предиктором развития ОНМК у больных этого возраста.

Практическая значимость

Выявленные молекулярно-генетические маркеры генов LPL и СЕТР могут быть использованы в качестве критериев раннего формирования групп больных повышенного риска XИМ и инсульта. Определение генотипа по генам LPL и СЕТР методом молекулярно-генетического типирования при XИМ позволяет прогнозировать характер течения заболевания и, следовательно, дает возможность выбора оптимальных патогенетических методов лечения и превентивной тактики.

Может быть рекомендовано типирование по генам ЛПЛ, СЕТР у ближайших родственников больных для определения у них риска развития ХИМ и инсульта.

На основании высокой частоты встречаемости сочетанной дислипидемии и ОНМК в возрастной группе 60 - 74 лет больных этого возраста можно считать группой риска по тяжёлому течению ХИМ, что требует активной терапии с коррекцией липидного метаболизма.

В целях профилактики ОНМК для больных XИМ показано включение в обязательное обследование генов липидного метаболизма LPL и CETP, и развёрнутого анализа показателей липидного метаболизма.

Рекомендовано в состав комплексной терапии пациентов с XИМ и дислипидемией включать препарат вазилип.

Алгоритм ведения больных старших возрастных групп с риском развития и прогрессирования цереброваскулярных заболеваний:

- 1. Сбор анамнеза, физикальное и клиническое обследование больного.
- 2. Молекулярно—генетическое исследование генов липопротеинлипазы и белка переносчиков эфиров холестерина для раннего выявления групп риска тяжёлого течения цереброваскулярных заболеваний. При выявлении генотипов H+H+ гена LPL и B2B2 гена СЕТР (ассоциированных с ГЛП-IIв типа) необходимо сразу же определять полный липидный профиль.
- 3. У больных с цереброваскулярными заболеваниями и пациентам от 35 лет и до 80 лет необходимо определять полный липидный профиль.
- У лиц старше 80 лет при первом посещении определять ОХС и ТГ. В случае повышенного содержания одного из этих показателей провести развёрнутый липидный профиль.
- 4. Привыявлении нарушений липидного метаболизма наметить целигиполипидемической терапии. В первую очередь начать с немедикаментозного лечения (диета, коррекция веса ИМТ<25, повышение физической активности, прекращении курения и приёма алкоголя).

Если в течение 8 недель не удаётся достичь целевых уровней липидов, то, следует начать дополнительно медикаментозную терапию с контролем уровней липидов и печеночных ферментов 1 раз в 3 месяца, затем 1 раз в 6 месяцев.

Основные положения, выносимые на защиту:

- 1. Для оценки вероятности характера течения заболевания и продолжительности жизни пациентов с ХИМ предлагаются такие молекулярно-генетические маркёры, как гены LPL и CETP. Генотип H+H+ гена LPL у больных ХИМ ассоциирован с риском развития ОНМК, а генотип В1В1 гена СЕТР с наследственной предрасположенностью к сердечно сосудистым заболеваниям. Генотип H-H- гена LPL и В2В2 гена СЕТР ассоциированы с благоприятным течением заболевания и долголетием.
- 2. Хроническая гиперхолестеринемия на фоне сниженного уровня ЛПВП ассоциирована с тяжестью течения ХИМ I-II ст., а наличие сочетанной дислипидемии (ТГ более 1,77ммоль\л) с ХИМ II –III ст. и перенесённым ОНМК. У долгожителей чаще встречаются нормальные показатели уровней липидного метаболизма и реже перенесённый ишемический инсульт.
- 3. Наличие ожирения II степени, жирового гепатоза и метаболического синдрома в возрастной группе 60 74 лет увеличивают вероятность развития ОНМК.
- 4. Вазилип активный, безопасный и хорошо переносимый препарат для лечения больных ХИМ с дислипидемией и с сопутствующей патологией печени, что позволяет его включать в комплексную терапию при ХИМ.

Внедрение результатов исследования в практику:

Разработанные методы молекулярно-генетического типирования для определения генотипа по гену LPL и гену СЕТР и технология комплексного исследования липидного метаболизма у пациентов старших возрастных групп применяются для обследования пациентов в неврологическом отделении Российского геронтологического научно-клинического центра Росздрава.

Апробация работы

Основные положения диссертационной работы были представлены на IX международном конгрессе "Человек и лекарство" (Москва, 2002), на съезде ВОГИС "Генетика в XXI веке: современное состояние и перспективы развития " (Москва, 2004), конференции "Пожилой человек. Качество жизни" (Москва, 2005), III-ей Всероссийской научно-практической конференции "Общество, государство и медицина для пожилых" (Москва, 2006), VI Европейском конгрессе по геронтологии "Генетика инсульта" (2007).

Публикации

По теме диссертации опубликовано 11 научных работ, в том числе 2 работы в журналах, рекомендованных ВАК.

Объем и структура диссертации

Диссертация изложена на 159 страницах машинописного текста и состоит из введения, обзора литературы, главы с описанием материалов и методов исследования, главы собственных исследований, обсуждения полученных результатов, заключения, выводов и практических рекомендаций. Работа иллюстрирована 6 рисунками, цифровой материал представлен в 33 таблицах. Библиографический указатель содержит 280 источников.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Группа больных ХИМ сформирована из пациентов отделения неврологии ФГУ РГНКЦ Россздрава. Обследовано 358 человек, из них 85 мужчин и 273 женщины в возрасте от 35 до 102 лет (средний возраст 71,9). Больные были разделены на четыре возрастные группы (рис.1).

Больные ХИМ, перенесшие ишемический инсульт более одного года назад, составили:

В І группе – (средний возраст 50,9) 26 человек (24%).

Во ІІ группе - (средний возраст 66,3) 29 человек (31%).

В ІІІ группе - (средний возраст 79,5) 10 человек (30%).

В ІУ группе – (средний возраст 92,3 года) 7 человек (4%).

Гендерное распределение однотипно. Во всех группах преобладали женщины.

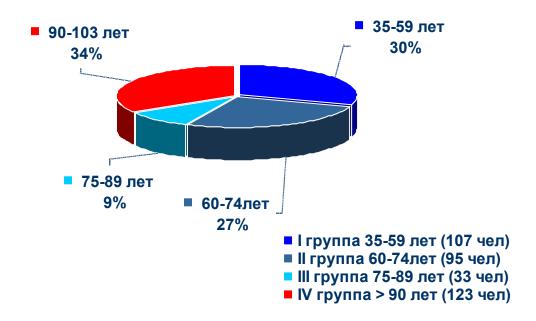


Рис. 1 Распределение больных ХИМ на возрастные группы.

Критериями диагнозов являлись: действующая в нашей стране Международная классификация болезней десятого пересмотра 1995г, рекомендации ВОЗ, Европейские рекомендации III пересмотра 2003 года, а также анамнестические, клиниколабораторные, инструментальные методы исследования (МРТ, КТ, УЗДГ, ЭКГ, УЗИ) и имеющиеся медицинские документы.

Семейный анамнез. Оценка семейного анамнеза проводилась на основе опроса больного с помощью стандартного опросника ВОЗ "Семейный анамнез". Семейный анамнез считали отягощенным при наличии двух или более пораженных родственников.

УЗДГ - Дуплексное сканирование МАГ - цветное дуплексное сканирование экстракраниальных отделов брахицефальных сосудов проводилось в ФГУ РГНКЦ Росздрава на приборе ALOKA – 3500 SV Sony с высокоразрешающей способностью изображения в реальном масштабе времени (В-режим) и доплеровском аппарате со спектральным анализом.

Магнитно-резонансная томография проводилась в Т1 и Т2 режиме в диагностическом центре поликлиники №1 МЦ «Управление делами Президента РФ» и в 33 ГКБ.

Компьютерная томография проводилась на базе поликлиники ФГУ РГНКЦ Росздрава.

УЗИ – ультразвуковое исследование печени проводилось в ФГУ РГНКЦ Росздрава.

Исследование полиморфизма генов проводилось в лаборатории возрастной популяционной иммуногенетики ФГУ РГНКЦ Росздрава.

Исследование липидного метаболизма проводилось в лаборатории липидного обмена ФГУ РГНКЦ Росздрава.

Статистическая обработка.

Для статистического анализа результатов использовалась программа "Statistica версия 6,0 (США). Так как большинство распределений в выборках отличались от

нормального, то для описания выборок указывали число объектов исследования, минимальное и максимальное значения признака, медиану. Достоверность различий в частотах встречаемости аллелей и генотипов генов LPL и СЕТР в различных группах больных оценивали с помощью критерия χ^2 (Пирсона) с поправкой Йейтса и точного критерия Фишера. Для оценки достоверности различий двух средних величин использовали непараметрический критерий Вилкоксона для парных сравнений и U-критерий Манна - Уитни (в связи с отклонением распределения от нормального). Для всех видов анализа статистически значимыми считали различия при р<0,05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Факторы риска ХИМ

По данным анамнеза, сравнение исходных данных у пациентов показало, что статистически достоверно значимые факторы риска XИМ имеют свои особенности у пациентов различных возрастных групп (табл. 1):

I группа - наследственная отягощённость по сердечно-сосудистым заболеваниям, курение, употребление алкоголя;

II группа - артериальная гипертония, перенесённый инфаркт миокарда, перенесённый ишемический инсульт;

III группа - артериальная гипертония, перенесённый ишемический инсульт;

IV группа - ИБС: стенокардия II-III ФК, перенесённый инфаркт миокарда.

Нами было выявлено возраст-зависимое нарастание тяжести течения XИМ от I до III стадии заболевания. Частота встречаемости перенесённого ишемического инсульта была выше во 2 и 3-й возрастных группах. В группе долгожителей частота встречаемости ОНМК минимальна.

Таблица 1 Клинико-демографическая характеристика обследованных групп пациентов с XИМ

	Больны	ле XИМ n=358 человек				
Показатели	35 - 59 лет	60 - 74 лет	75-89 лет	90 - 103 лет		
	(50,9#)	$(66,3^{\#})$	$(79,5^{\#})$	(92,3#)		
	n=107 (30%)	n=95 (27%)	n=33 (9%)	n=123 (34%)		
	I	II	III	IV		
	Абс. (%)	абс. (%)	абс. (%)	абс. (%)		
Пол: Муж. n=85	24 (22)	20 (21)	8 (24)	33 (27)		
Жен. n=273	83 (78)	75 (79)	25 (76)	90 (73)		
Курение: Да n=31	20 (18,7)	6 (6,3)	2 (6,1)	3 (2,44)		
Нет n= 327	87 (81,3)	89 (93,7)	31 (93,9)	120 (97,6)		
Употребление						
алкоголя:Да: n=10	8 (7, 8)	2 (2, 1)	0 (0)	0 (0)		
Нет: n=348	99 (92,5)	93 (97,9)	33 (100)	123(100)		
Наследственность*						
Да =84	38 (35,5)	28 (29,5)	7 (21,2)	11 (8,9)		
Hет n=274	69 (64,5)	67 (70,5)	26 (78,8)	112(91,1)		

XИМ I ст. n=45	32 (29,9)	11 (11,6)	2 (6,06)	0 (0)
XИМ II ст. n=195	64 (59,8)	58 (61,1)	23 (69,7)	50 (40,7)
XИМ III ст. n=118	11 (10,3)	26 (27,4)	8 (24,2)	73 (59,3)
ОНМК Да: n=72	26 (24,3)	29 (30,5)	10 (30,9)	7 (5,7)
Нет: n=286	81 (75,7)	66 (69,5)	23 (69,7)	116(94,3)
ИБС:ИМ Да: n=40	2 (1,9)	15 (15,8)	3 (9,1)	20 (16,3)
Нет: n=318	105 (98,1)	80 (84,2)	30 (90,9)	103(83,7)
ИБС:ССК-ІІ-ІІІФК				
Да:n=152	26 (24,3)	34 (35,8)	12 (36,4)	80 (65,0)
Heт: n=206(чел).	81 (75,7)	61 (64,2)	21(63,6)	43 (35,0)
АГ (чел)Да: n=289	82 (76,6)	87 (91,6)	31 (93,9)	89 (72,4)
Нет:n=69	25 (23,4)	8 (8,4)	2 (6,06)	34 (27,6)
Гепатоз Да: n=153	58 (55,2)	58 (62,4)	17 (53,1)	20 (40,8)
(УЗИ) Heт: n=126	47 (44,8)	35 (37,6)	15 (46,9)	29 (59,2)
СД- 2 тип Да n=28	7 (6,50)	10 (10,5)	3 (9,1)	8 (6,50)
Heт n=330	100 (93,5)	85 (89,5)	30 (90,9)	115(93,5)
OXC >5 n=225	88 (82,2)	80 (84,2)	26 (78,8)	31 (31,0)
OXC <5 n=110	19 (17,8)	15 (15,8)	7 (21,2)	69 (69,0)
$T\Gamma > 1,77 \text{ n=48}$	22 (20,6)	19 (20,0)	7 (21,2)	0 (0)
$T\Gamma < 1,77 \text{ n}=278$	85 (79,4)	76 (80,0)	26 (78,8)	91(100)

^{*}отягощенный семейный анамнез по раннему развитию сердечно-сосудистых заболеваний

Группы сравнения:

I с IV р < 0,05 (курение, наследственная отягощённость по сердечно – сосудистым заболеваниям, алкоголь).

I с II, III, IV р < 0,05 (атеросклероз аорты, ИБС: атеросклеротический кардиосклероз, перенесённый инфаркт миокарда, стенокардия $2\Phi K$).

I с II, III р < 0,05 (артериальная гипертония)

II с IV р < 0.05 (жировой гепатоз, артериальная гипертония, перенесённый ишемический инсульт)

IV с I, II, III p < 0.05 (гиперхолестеринемия, гипертриглицеридемия).

Генетические маркеры развития и течения ХИМ.

Связь генов LPL и СЕТР с развитием ХИМ.

Проанализирована связь генотипов гена LPL с традиционными факторами риска XИМ у всех обследованных больных XИМ. Было отмечено увеличение доли курящих среди пациентов с генотипом H+H+ (15% против 5% и 8%; p=0,022) по сравнению с носителями других генотипов, что согласуется с данными Senti с соавторами (2001), Corella с соавторами (2002). Связи генотипов гена LPL с полом больных, наследственной предрасположенностью к сердечно- сосудистым заболеваниям, артериальной гипертонией, ИБС: стенокардией-II-III ФК, ИМ, сахарным диабетом 2 типа у всех обследованных больных ХИМ не выявлено (p>0,05).

[#] в связи с отклонением распределения от нормального, указаны средние значения (в скобках).

При изучении распределения частоты генотипов гена LPL выявлено (рис.2), что у пациентов XИМ II-III ст. с ОНМК в анамнезе (средний возраст 63,8 лет) частота встречаемости генотипа H^+H^+ в 2,2 раза выше (p=0,0035, χ^2 =8,53), чем у больных ХИМ IIIст. (средний возраст 90,8 лет) без ишемического инсульта. Частота встречаемости аллеля H- выше в группе больных ХИМ-IIIст. без ОНМК по сравнению с группой больных перенесших инсульт (p=0,007, χ^2 =7,30). Это свидетельствует об ассоциации генотипа H^+H^+ с тяжестью течения ХИМ и позволяет считать его маркером риска, увеличивающим вероятность развития ОНМК. Генотип H-H- гена LPL ассоциирован с более благоприятным течением ХИМ.

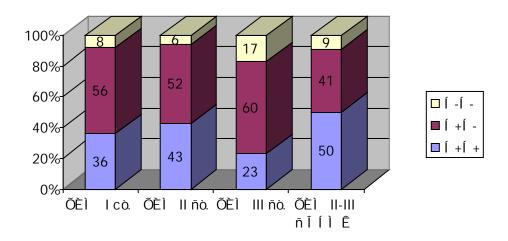


Рис. 2. Распределение частоты встречаемости генотипов гена LPL в группе больных XИМ I-II-III ст. без ОНМК и с ОНМК (в анамнезе).

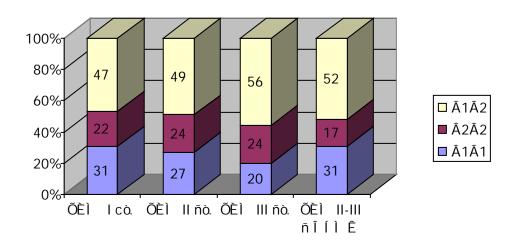


Рис. 3. Распределение частоты встречаемости генотипов гена СЕТР в группе больных XИМ I-II-III ст. без ОНМК и с ОНМК (в анамнезе).

При исследовании связи полиморфизма генов СЕТР с факторами риска у больных XИМ статистически достоверно выявлена ассоциация генотипа B1B1 гена СЕТР с наследственной предрасположенностью к сердечно - сосудистым заболеваниям (65% против 35% , p=0,049, χ 2=3,87, df=1) по сравнению с носителями генотипа B2B2. Таким образом, полученные результаты позволяют считать гомозиготный генотип B1B1 маркёром сердечно – сосудистых заболеваний. Связи генотипов гена СЕТР с полом

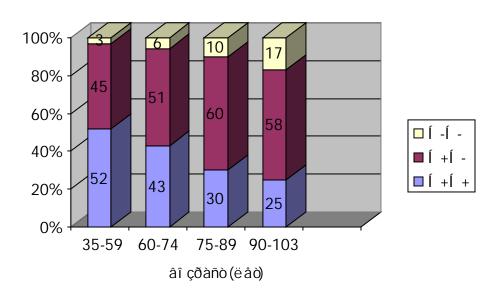
больных, курением, артериальной гипертонией, сахарным диабетом 2 типа у всех обследованных больных не выявлено (p>0,05). Связь гена СЕТР с тяжестью течения XИМ и ишемическим инсультом в анамнезе не выявлена (p>0,05).

Особенности липидного метаболизма у больных XИМ и их зависимость от генотипов генов LP и CETP.

Следующим этапом исследования было выявление связи липидного метаболизма у больных XИМ с генотипами генов LPL и CETP (табл.2).

У всех больных вне зависимости от генотипов наблюдалась гиперхолестеринемия и сниженные уровни ЛПВП, но для больных с генотипами H+H+ гена LPL и B2B2 гена CETP уровни $T\Gamma$ повышены ($\chi 2=6,48$; df=1, p=0,013) по сравнению с носителями генотипов H-H-, B1B1 и B1B2, что свидетельствует об ассоциации этих генов с сочетанной дислипидемией у больных XИМ.

Таблица 2 Показатели липидного метаболизма у больных XИМ в зависимости от генотипов генов LPL, CETP.


Генотипы	Средний	Пока	затели (ми	моль\л) (* p< 0,05))
генов LPL, CETP у больных XИМ	возраст (лет)	OXC (<5,0)	ΤΓ (< 1,77)	ЛПНП (< 3,0)	ЛПВП (>1,0)	ЛПОНП (< 0,63)
LPL n=167						
H+H+ n=75 (45%)	66,4	6,58	1,73	5,07	0,94	0,66
H+H- n=80 (48%)	72,9	6,48	1,54	4,92	0,93	0,73
H-H- n=12 (7%)	80,6	6,63	1,38	5,17	0,97	0,58
CETP n=163						
B1B1 n=44 (27%)	66,7	6,31	1,56	4,68	0,94	0,70
B1B2 n=84 (52%)	71,9	6,43	1,54	5,01	0,95	0,59
B2B2 n=35 (21%)	74,4	7,08	1,85*	5,51	0,88	0,88*

Генетические маркеры продолжительности жизни больных ХИМ.

Продолжительность жизни — зависит от генетических факторов и факторов внешней среды. Нами было предпринято сравнение частот аллелей и генотипов генов-кандидатов XИМ у людей старческого возраста и более молодых, что позволяет изучить варианты генов, которые могут определять наследственную предрасположенность к увеличению продолжительности жизни.

При анализе HindIII полиморфизма **гена LPL** показано, что в группе долгожителей (IV группа) значительно снижена частота генотипа H+H+ (0,25 против 0,52; χ^2 =12,5,

df=1, p<0,0004), выше частота генотипа H+H- (0,45 и 0,58; χ^2 =2,74, df=1, p=0,05) и, значительно выше частота генотипа H-H- (0,17 против 0,03; χ^2 =7,21, df=1, p=0,007) по сравнению с 1-й группой пациентов 35-59 лет. При этом в группе долгожителей частота аллели H+ в 1,4 раза ниже, а аллели H- в 1,8 раза выше, чем в I группе пациентов (χ^2 =14,7, df=1, p=0,0001) (**рис. 4**). Вероятно, носительство аллели H- гена LPL дают некоторые адаптивные преимущества его носителю и увеличивают вероятность долголетия у больных XИМ.

Puc. 4. Распределение генотипов гена LPLy больных XИМ в различных возрастных группах

При сравнении частоты распределения генотипов **гена СЕТР** по возрастным группам оказалось, что в группе долгожителей частота генотипа B1B1 в 2,2 раза ниже $(0,17\ \text{против}\ 0,37;\ \chi 2=7,31,\ \text{df=1},\ p=0,007)$ по сравнению с группой больных моложе 59 лет и значимо ниже частота аллели B1 $(0,46\ \text{против}\ 0,60,\ \chi 2=6,41,\ \text{df=1},\ p=0,011)$ и выше аллели B2 $(0,54\ \text{и}\ 0,41;\ \chi 2=6,41,\ \text{df=1},\ p=0,011)$ (**рис.5**). На основании этих данных можно предположить, что вероятность достижения долголетия снижена у носителей аллели B1, а аллель B2 гена белка переносчика эфиров холестерина, вероятно, может служить маркером продолжительной жизни больных XИМ.

Если учесть, что генотип B1B1 связан с увеличением концентрации СЕТР и низким уровнем ЛПВП (Ordovas J.M., et al., 2000), то, возможно, он является более атерогенным, и обуславливает генетическую предрасположенность к ХИМ и сердечнососудистым заболеваниям в более молодом возрасте. Полученные нами результаты у больных ХИМ согласуются с данными исследований А. Inazu (1990, 1994) в японской популяции о том, что генотип B2B2, связанный с дефицитом СЕТР, может быть связан с продолжительностью жизни.

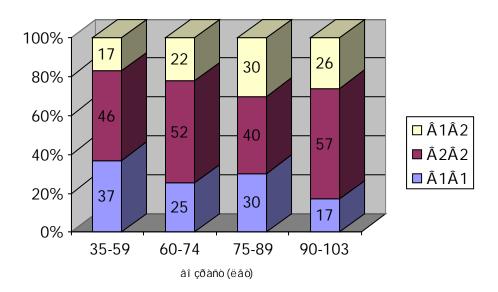


Рис. 5. Распределение генотипов гена СЕТР у больных ХИМ в различных возрастных группах

Показатели липидного метаболизма у больных ХИМ в разных возрастных группах.

Наиболее выраженные изменения уровня липидов имели место в группе больных в возрасте 60-74 лет (табл.3 A). Также в этой группе с наибольшей частотой встречалась ГЛП Пв типа (табл.3 Б). По литературным данным аналогичная частота встречаемости ГЛП Пв типа в этом возрасте отмечена в американской популяции (39%). В группе долгожителей преобладают лица с нормальными показателями липидного метаболизма (снижается содержание ОХС 5,09 против 6,79, p=0,0001; ТГ 1,08 против 1,61 p=0,020; ХС ЛПНП 3,89 против 5,14 p=0,006 и ХС ЛПОНП 0,48 против 0,67 p=0,006) по сравнению с І группой и со ІІ группой (p=0,0001; p = 0,0001; p=0,0007, p=0,0004 соответственно). По мере старения статистически достоверно снижается частота встречаемости Пв типа дислипидемии (с 27% до 4% , χ^2 =9,19 p=0,0024; и 38% против 4% χ^2 = 15,6 p=0,0001 соответственно). В группе долгожителей существенно изменяется распределение типов ДЛП: увеличивается доля лиц с нормальными показателями липидного метаболизма (с 20% до 47% , χ^2 =9,73 p=0,0018), соответственно снижается частота встречаемости Па и Пв типов ДЛП, причём Пв тип ДЛП в этой группе практически не встречается (4%, p=0,0001).

Повышенное содержание уровней атерогенных липидов (ХС ЛПНП, ХС ЛПОНП, ТГ) у больных ХИМ, где преобладали женщины, средний возраст которых составил 51,6 – 66,5 лет, возможно связано с возрастным изменением регионального распределения жировой ткани, в частности с увеличением доли абдоминального жира, что характерно для женщин в постменопаузальном периоде. Гиперлипидемия в этом возрасте является показателем риска развития сосудистых осложнений, приводящих к тяжёлой ХИМ, ОНМК и летальности (J.E. Manson 1994 г; О.А. Колесниковой, Н.М. Пасман 2006г).

Причина нормализации показателей липидного метаболизма (ОХС, ТГ, ХС ЛПНП и ХС ЛПОНП), наблюдаемая у больных старше 90 лет не известна.

Таблица 3 Особенности липидного метаболизма у больных ХИМ в разных возрастных группах

A	Возрастные группы больных XИМ n=224							
Показатели (ммоль\л)	1 гр 35-59 лет (51,6) n=91 (41%)	II гр 60– 74 лет (66,5) n = 7 1 (32%)	III гр 75 –89 лет (79,6) n = 2 7 (12%)	IV гр 90-103 лет (91,6) n=35 (16%)	р I c IV гр.	р II с IV гр.		
OXC (<5,0)	6,79 ±0,24	7,04 ±0,23	6,46 ±0,42	5,09±0,28	0,0001	0,0001		
TΓ (< 1,77)	1,61 ±0,15	1,60 ±0,13	1,35±0,16	1,08±0,15	0,020	0,0001		
ЛПНП(< 3,0)	5,14 ±0,23	5,42 ±0,24	4,82 ±0,46	3,89±0,38	0,006	0,0007		
ЛПВП (>1,0)	1,04±0,07	0,90 ±0,07	1,09±0,12	1,02±0,10	0,907	0,231		
ЛПОНП (<0,63) Б	0,67 ±0,07	0,71 ±0,06	0,62±0,08	0,48±0,08	0,006	0,0004		
Б								
Фенотипы ГЛП n=236	n=91 (39%)	n=71 (30%)	n=27 (11%)	n = 4 7 $(20%)$	p I c IV	p II c IV		
ГЛП-нет n=53 (23%)	20%	9%	26%	47%*	> 0,05	0,0018		
ГЛП I тип n=8 (3%)	3%	3%	0%	6%	> 0,05	> 0,05		
ГЛП II а n=116 (49%)	49%	51%	56%	43%	> 0,05	> 0,05		
ГЛП II в n=59 (25%)	27%	38%*	19%	4 %*	0,0024	0,0001		

Связь липидного метаболизма с тяжестью течения ХИМ.

Нами было выявлено, что у больных ХИМ III ст. наиболее характерным является значительное снижение уровней ЛПВП по сравнению с ХИМ-I ст. и ХИМ- II ст. (0,78 против 1,14; p=0,008 и 0,78 против 1,04; p=0,004 соответственно) (табл. 4 A), что свидетельствует о глубине нейродегенеративного процесса. Интересно отметить, что у больных ХИМ II-III ст. в возрастной группе 60-74 лет с перенесённым ишемическим инсультом, у которых был снижен уровень ЛПВП (0,74 против 1,09, p=0,0001), отмечается повышение содержания $T\Gamma(1,81$ против 1,38 p=0,015) (табл. 3 Б), что можно рассматривать как фактор риска OHMK

Таблица 4 Показатели липидного метаболизма у больных XИМ I – III ст.

A

	По	жазатели (мм	оль\л)	(* p<0,05)		
XИМ I – III ст.	OXC	ТΓ	ЛПНП	ЛПВП	ЛПОНП	
n=236 чел.	(<5,0)	(< 1,77)	(<3,0)	(>1,0)	(< 0,63)	
XИМ I ст. n=35	6,27 ±0,28	1,24±0,16	4,73 ±0,29	1,14±0,10*	0,51±0,06*	
ХИМ II ст. n=150	6,63 ±0,20	1,53±0,11	5,15 ±0,20	1,04±0,05*	0,67 ±0,05*	
XИМ III ст. n=51	6,12 ±0,26	1,55±0,15	4,75 ±0,29	0,78 ±0,08*	0,69 ±0,08	
Б						
ХИМ без ОНМК	6,48 ±0,18	1,38±0,09	5,03 ±0,18	1,09±0,05	0,61±0,04	
n=177 (73,3 лет)	0,40 ±0,10	1,36±0,09	3,03±0,18	1,09±0,03	0,01±0,04	
ХИМ с ОНМК	6,52 ±0,23	1,81 ±0,20*	4,92 ±0,24	0,74 ±0,07*	0,75 ±0,08	
n=59 (66,3 лет)	0,32-0,23	1,01-0,20	7,72 ±0,24	0,74-0,07	0,73±0,08	

Показатели липидного метаболизма у больных ХИМ с различной степенью стеноза экстракраниальных магистральных артерий.

Таблица 5 Анализ липидного метаболизма у больных ХИМ с различной степенью стеноза экстракраниальных магистральных артерий.

			
	Стено	з МАГ	
Параметры	Меньше 50 %	Больше 50%	p
1 1	1гр.	2гр.	
Всего чел. n=99	77 (78%)	22 (22%)	
Пол М n =25	18 (23%)	7 (32%)	P>0,05
Ж n =74	59 (77%)	15 (68%)	P>0,05
Средний возраст (лет) [#]	58,9 (35-88)	70,6 (56-90)	p<0,05
ОХС (ммоль\л)	6,75 ±0,22	6,05 ±0,43	P>0,05
ТГ (ммоль\л)	1,35±0,14	1,43±0,19	P>0,05
XC ЛПНП (ммоль\л)	5,10 ±0,21	4,31 ±0,47	p<0,05
XC ЛПВП (ммоль\л)	1,09±0,06	1,07±0,12	P>0,05
XC ЛПОНП (ммоль\л)	0,54±0,05	0,63±0,10	P>0,05

Нами была проанализирована зависимость между степенью поражения МАГ и содержанием основных липидных фракций больных ХИМ (табл.5). Были выделены две группы больных: имеющих (средний возраст 58,9 лет) и не имеющих гемодинамические значимые (более 50%) стенозы (средний возраст 70,6 лет). Степень стеноза определялась по данным УЗДГ экстракраниальных сосудов головного мозга. Повышенное содержание ЛПНП статистически достоверно наблюдалось во всех группах, но у больных ХИМ со степенью стеноза <50% оно было более выражено, по сравнению с группой больных с ХИМ >50% (5,10 против 4,31, p=0,039).

Анализ полученных данных позволяет утверждать, что для развития стенозов МАГ у больных XИМ имеет значение не столько степень выраженности гиперхолестеринемии, сколько её длительность.

Показатели липидного метаболизма у больных ХИМ с жировым гепатозом (не алкогольным)

Почти половина обследованных нами пациентов с XИМ имеет жировой гепатоз (табл.6). При анализе было выявлено, что для обеих групп характерна гиперхолестеринемия (6,39 и 6,92 ммоль\л против ОХС<5 ммоль\л ВОЗ).

У больных XИМ с жировым гепатозом статистически достоверно выявлено увеличенное содержание ТГ (1,87 против 1,31 p=0,008) ; XC ЛПОНП (0,85 против 0,55; p=0,004) и снижение уровня XC ЛПВП (0,89 против 1,07 p=0,05), что свидетельствует о наличии сочетанной дислипидемии, которая составляет 39% (p = 0,008, χ^2 = 7,06), по сравнению с группой больных не имеющих гепатоза.

Таблица 6 Сравнительный анализ показателей липидного метаболизма у больных ХИМ без патологии печени с группой больных ХИМ имеющих жировой гепатоз

	Больные XИМ, n=165					
Показатели	Нет патологии	Жировой гепатоз	p			
(ммоль\л)	печени					
	67,8 (35-95)	61,5 (35-99)				
	n=95 (58%)	n=70 (42%)				
OXC (<5,0)	6,39±0,23	6,92±0,26	0,09			
TΓ (< 1,77)	1,31±0,12	1,87±0,20	0,008			
ХС ЛПНП (< 3,0)	4,99±0,23	5,16±0,26	0,56			
ХС ЛПВП (>1,0)	1,07±0,07	0,89 ±0,07	0,05			
ХС ЛПОНП (< 0,63)	0,55±0,04	0,85 ±0,09	0,004			
Типы ГЛП						
ГЛП-нет n=34 (21%)	24%	16%	>0,05			
ГЛП I типа n=4 (2%)	4%	0%	>0,05			
ГЛП –II а n=86 (52%)	57%	46%	>0,05			
ГЛП – II в n=41 (25%)	15%	39%	0,008			

Ожирение как фактор риска ХИМ

В нашем исследовании мы попытались выяснить, как влияет ожирение на развитие XИМ в зависимости от возраста. Для оценки степени ожирения использовалась градация ИМТ (вес (кг) / рост (м²)) предложенная ВОЗ: нормальная масса тела (ИМТ 18,5-24,9); избыточная масса тела I степени (ИМТ 25,0-29,9); II степени (ИМТ 30,0-39,9) и III степени (ИМТ 40, и выше).

Наибольшее число пациентов XИМ с нормальной массой тела встречается в группе долгожителей (56% против 29% и 26%; p=0,0007, χ^2 =11,5 и p=0,0003, χ^2 =13,4 соответственно) по сравнению с I и II группами.

С возрастом уменьшается число лиц имеющих II степень ожирения (35%, 35%, 27% против 9 %, p=0,0002, χ^2 =13,5; p=0,0003, χ^2 =13,2 и p=0,032, χ^2 =4,61 соответственно) (рис.7).

Для долгожителей не характерна III ст. ожирения.

Рис.6. Сравнительный анализ частоты встречаемости различной степени ожирения у больных XИМ в зависимости от возраста

Липидный метаболизм у больных ХИМ в зависимости от степени ожирения

По полученным данным сочетанная дислипидемия (ГЛП IIв) с наибольшей частотой встречается у больных ХИМ со II ст. ожирения по сравнению с другими группами (51% против 25%, 0% и 27%; p=0,008, χ^2 =7,10 , p=0,019, χ^2 =5,45; p=0,003, χ^2 =8,99 соответственно).

В группе больных ХИМ, не имеющих дислипидемии и в группе больных с ГЛП - I типа наблюдалось большее число пациентов с нормальной массой тела по сравнению с группой больных, имеющих ГЛП IIв типа (47% и 63% против 20%; p=0,005, χ 2 =7,91, p=0,033, χ 2 =4,57 соответственно). Таким образом можно сделать вывод, что II степень ожирения у пациентов с ХИМ в старшей возрастной группе ассоциирована с ГЛП IIв типа (рис.7).

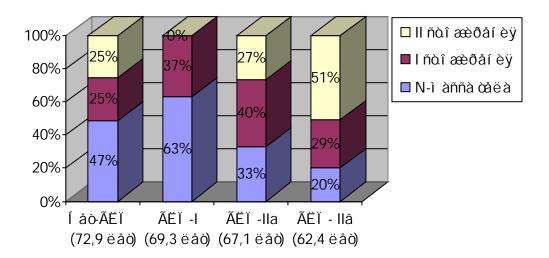


Рис.7. Сравнительный анализ дислипидемий у больных ХИМ с различной степенью ожирения

Патология печени у больных ХИМ в зависимости от степени ожирения

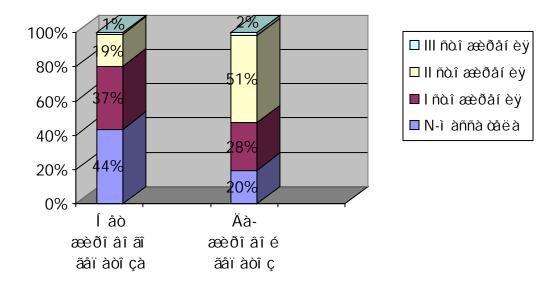


Рис.8. Зависимость выраженности патологии печени от степени ожирения у больных ХИМ

Нами показано, что у больных ХИМ жировой гепатоз ассоциирован с 2-й степенью ожирения (51% против 19%, χ^2 =22,1; p=0,0001). Среди больных ХИМ с нормальным весом тела число лиц без жирового гепатоза в два раза превышает количество пациентов с жировым гепатозом (44% против 20%, χ^2 =12,3; p=0,0005). Развитие жирового гепатоза связано с увеличением массы абдоминального жира, которое у женщин происходит преимущественно в постменопаузальном периоде. Абдоминальная жировая ткань, является одной из составляющих ИМТ.

Метаболический синдром у больных XИМ I – III ст. (с ОНМК и без ОНМК в анамнезе)

Критерием метаболического синдрома являлось наличие 3-х или более ниже указанных симптомов (по рекомендации BO3):

- 1) ИМТ>25 кг\м²;
- 2) ТГ более 1,7 ммоль\л (>150 мг\дл);
- 3) XC ЛПВП женщины < 1,3 ммоль $\$ л; мужчины < 1,0 ммоль $\$ л;
- 4) уровня АД > 135\85 мм. рт. ст;
- 5) глюкоза плазмы крови натощак >6,1 ммоль\л.

Выявлено, что с наибольшей частотой метаболический синдром (МС) встречался в группе больных ХИМ II-III ст. с перенесённым ишемическим инсультом (66% против 35%, p=0,047, χ^2 =3,95 df=1 (табл.7), что свидетельствует о связи МС с тяжестью течения ХИМ.

Таблица 7 Частота встречаемости метаболического синдрома у больных ХИМ с ОНМК и без ОНМК (в анамнезе)

OTIVITY (B anamire	,					
		Больные ХИ	M			
	ХИМ	ХИМ	ХИМ	Группы с	сравнени	RI
ПАРАМЕТРЫ	I ст.	II-III ст.	II-III ст.	P	P	P
	без ОНМК	без ОНМК	с ОНМК	I c III	II c III	I c II
	I гр.	II гр.	III гр.			
Всегочел. n=111	n=17(15%)	n=65(59%)	n=29(26%)			
Средний возраст	52,5	77,2	66,3			
(лет)	(35-80)	(37-103)	(36-91)			
МС -нет	(50/	520/	2.40/	0.047	0,169	0,522
n=55 (50%)	65%	52%	34%	0,047	0,103	0,022
МС – да	250/	400/	660/	0.047	0,169	0,522
n=56(50%)	35%	48%	66%	0,047	0,107	0,522

Метаболический синдром у больных ХИМ в различных возрастных группах

Выявлено, что с наибольшей частотой МС встречается в возрастной группе больных XИМ 60 -74 лет (77%), с наименьшей - в группе долгожителей (12%) (p=0,0001, χ^2 =10,8, df=1 соответственно). В группе старческого возраста (75-89 лет), также отмечаем статистически достоверное снижение частоты встречаемости метаболического синдрома, по сравнению с пожилыми пациентами (60 – 74 лет) (37% против 77%, p=0,017 χ^2 =5,66, df=1). Таким образом, можно предположить, что возраст 60 – 74 лет является "пиком" негативных проявлений метаболического синдрома, что, возможно, приводит к развитию ОНМК, инвалидизации, а, возможно, и ранней летальности.

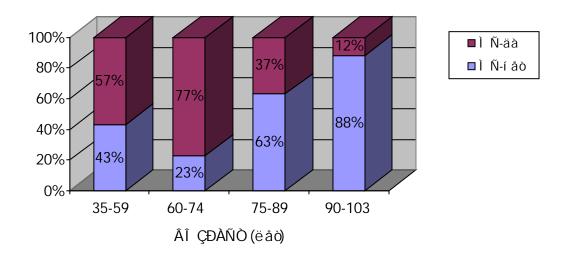


Рис.9. Частота встречаемости метаболического синдрома у больных XИМ в различных возрастных группах

Распределение типов дислипидемий при метаболическом синдроме у больных XИМ

Нами было выявлено (табл.8)., что у больных XИМ с MC характерна ГЛП IIв типа (75% против 0%, p=0,0001, χ^2 =61,9 df=1)., тогда как для больных XИМ без MC - ГЛП IIа типа. Таким образом, возрастание уровня ТГ на фоне хронической гиперхолестеринемии с большой вероятностью приводит к развитию MC у больных XИМ.

Таблица 8 Сравнительный анализ данных у групп больных ХИМ с МС и без МС в зависимости от дислипидемии

	Больные ХИМ,			
типы ГЛП	МС - Нет	МС - Да	p	χ^2
	n=54 (50%)	n=53 (50%)		
Средний возраст (лет)#	63,8 (45 – 93)	70,6 (35 – 96)		
ГЛП-нет n=21 (20%)	20 (37%)	1 (2%)	0,0001	18,8
ГЛП I типа n=3 (3%)	0 (0%)	3 (6%)	0,235	1,41
ГЛП –II a n=43 (40%)	34 (63%)	9 (17%)	0,0001	21,7
ГЛП – II в n=40 (37%)	0 (0%)	40 (75%)	0,0001	61,9

Взаимосвязь метаболического синдрома с патологией печени у больных ХИМ

Выявлено, что у больных ХИМ, имеющих жировой гепатоз (средний возраст 68,5 лет), в 2,7 раза чаще встречается МС (82% против 30%, p=0,0001, $\chi 2$ =19,8, df=1) по сравнению с группой больных не имеющих жирового гепатоза. (средний возраст 70,4 лет) (рис. 10). Таким образом, необходимо отметить, что патология печени, степень ожирения и наличие МС являются факторами усугубляющими течение ХИМ.

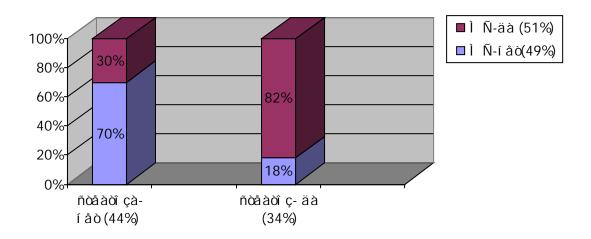


Рис.10. Связь метаболического синдрома с патологией печени у больных ХИМ

Генерик симвастатина – вазилип в лечение атерогенной дислипидемии у больных XИМ с сопутствующим жировым гепатозом.

Таблица 9 Динамика уровней липидов крови и их соотношений после лечения базисной терапией и вазилипом в дозе 20мг в сутки у больных ХИМ.

Параметры Больные XИМ, n=30 (лечение вазилипом в дозе 20 мг Ммоль\л					ве 20 мг\сут)
TVIIVIOJID VI	Исходно	После	Δ, %	После	Δ, %
	(0)	6 недель	(0-6)	12 месяцев	(0-12)
OXC	8,57±0,37	6,10±0,22	-29***	5,65±0,07	-34***
ТΓ	2,15±0,33	1,44±0,17	-33**	1,41±0,12	-34*
ХС ЛПНП	6,66±0,36	4,43±0,24	-33***	4,22±0,22	-37***
ХС ЛПВП	$0,80\pm0,09$	1,02±0,09	+28	1,07±0,08	+34*
ОХС/ХС ЛВП	8,57±0,37	6,10±0,22	-29***	5,65±0,18	-34***
ХС ЛНП/ХС ЛВП	6,66±0,36	4,43±0,24	-33***	4,22±0,22	-37***

Примечание: *Р<0,05, **Р<0,01, ***Р<0,001

Учитывая влияние нарушений липидного метаболизма на тяжесть течения XИМ, мы исследовали переносимость липидкоррегирующего препарата симвастатина (вазилипа) у больных XИМ с атерогенной дислипидемией и сочетанной патологией печени (таб.9).

1- Группа больных ХИМ в кол-ве (30 чел), на фоне базисной терапии (гипотензивных, сосудистых и нейропротективных препаратов) принимала вазилип в дозе 20 мг\сут, а другая группа больных ХИМ в кол-ве (38 чел) получала только базисную терапию. У больных ХИМ на фоне базисной терапии, после 6-недельного приема вазилипа в дозе 20 мг в сутки и через 12 месяцев лечения отмечалось достоверное снижение средних уровней атерогенных липидов крови в среднем на 32 %: ОХС (на 29%), ТГ (на 33%), и ХС ЛПНП (на 33%) (р<0,05). А, в группе больных, после 12 – ти месячного

лечения, получающих только базисную терапию - статистически достоверных различий с исходными липидными показателями не получено (p>0,05).

Безопасность терапии вазилипом оценивалась по клиническому состоянию больных и биохимических параметров.

Через 6 недель лечения и через 12 месяцев повышения активности АСТ, АЛТ, ЩФ, креатинина не наблюдалось.

Таблица 10 Динамика уровней биохимических показателей крови: АСТ, АЛТ, щелочной фосфатазы, КФК, креатинина, глюкозы и их соотношений после лечения вазилипом + базисной терапией у больных ХИМ.

	Больные XИМ, n=30					
	(лечение вазилипом в дозе 20 мг/сутки)					
Параметры	Исходно	После 6 месяцев	После 12 месяцев	P		
	до лечения	лечения	лечения	I с II гр.		
	n=30	n=30	n=30	I с III гр.		
	I гр.	II гр.	III гр.	II с III гр.		
АСТ (МЕ\л)	26,1±1,49	27,±1,53	25,4±1,38	>0,05		
АЛТ (МЕ\л)	27,9±3,68	25,4±2,45	23,8±1,95	>0,05		
КФК (МЕ\л)	78,1±8,17	83,4±9,6	89,6±11,9	>0,05		
ЩФ (МЕ\л)	63,8±3,36	62,7±3,10	66,6±3,39	>0,05		
Креатини (мкмоль\л)	76,6±3,36	80,1±6,41	82,0±6,61	>0,05		
Глюкоза (ммоль\л)	5,30±0,24	5,40±0,26	5,10±0,21	>0,05		

Таким образом, гиполипидемический препарат вазилип, относящийся к группе статинов, обладает нормализующим действием на липидный метаболизм и хорошо переносится больными XИМ старшей возрастной группы. Поэтому может быть рекомендован в лечении атерогенных дислипидемий у больных XИМ с сопутствующим жировым гепатозом.

выводы

1. Установлено, что наиболее значимыми факторами риска развития хронической ишемии мозга являются:

для пациентов молодого возраста (от 35 до 59 лет) - наследственная отягощённость по сердечно-сосудистым заболеваниям, курение, употребление алкоголя;

для пациентов 60 - 89 лет - артериальная гипертония, перенесённый инфаркт миокарда, перенесённый ишемический инсульт;

для пациентов старше 90 лет - ИБС: стенокардия II-III Φ K, перенесённый инфаркт миокарда

2. Показано возраст-зависимое нарастание тяжести течения XИМ от I до III стадии заболевания. Частота встречаемости перенесённого ишемического инсульта достоверно

выше в возрастной группе 60-74 лет, достигает в группе долгожителей минимального значения.

- 3. Выявлено, что генотип H+H+ гена LPL ассоциирован с риском развития ОНМК. Генотипы H-H- и H+H- гена LPL и аллель B2 гена СЕТР можно рассматривать в качестве маркёров благоприятного течения ХИМ и долголетия.
- 4. Выявлена связь генотипа B1B1 гена СЕТР с предрасположенностью к сердечнососудистым заболеваниям у больных ХИМ более молодого возраста. Связи гена СЕТР с тяжестью течения ХИМ не выявлено.
- 5. Установлено, что выраженная сочетанная дислипидемия с наибольшей частотой встречается у больных XИМ в возрастной группе 60 74 лет, что является важным фактором риска развития ОНМК в этом возрасте.
- 6. У больных ХИМ в возрастной группе 35 59 лет и 60 74 лет по сравнению с группой долгожителей чаще встречается ожирение II степени, которое ассоциировалось с сочетанной дислипидемией, жировым гепатозом, и метаболический синдром.
- 7. Метаболический синдром в сочетании с жировым гепатозом чаще всего встречается у больных ХИМ II-III ст. с перенесённым ОНМК. Таким образом, для больных ХИМ МС в сочетании с жировым гепатозом является фактором риска развития ОНМК.
- 8. Показано, что гиполипидемический препарат сивмастатин (вазилип), обладает нормализующим действием на липидный метаболизм и хорошо переносится больными XИМ старшей возрастной группы с жировым гепатозом.

Список работ, опубликованных по теме диссертации.

- 1. Малыгина Н.А., Костомарова И.В., Водолагина Н.Н., Мелентьев И.А., Сайгитов Р.Т. Связь генов липидного обмена с инфарктом миокарда и продолжительносью жизни. Ежемесячный научно-практический журнал "Медицинская генетика". М. 2003г. № 10 С.427.
- 2. Костомарова И.В., Малыгина Н.А., Водолагина Н.Н., Пащенко Д.Г., Митина 3.С., Серова Л.Д. Связь генов липидного обмена с уровнем атерогенных липидов и продолжительностью жизни больных ИБС старших возрастных групп. Альманах "Геронтология и гериатрия ". М. 2004г.№ 3, С. 85 89.
- 3. Малыгина Н.А., Костомарова И.В., Водолагина Н.Н., Мелентьев И.А., Сайгитов Р.Т. Связь генов липидного обмена с инфарктом миокарда и продолжительносью жизни. Материалы съезда ВОГИС "Генетика в XXI веке: современное состояние и перспективы развития ", М. 2004. С.- 80.
- 4. Ефимова Л.И., Костомарова И.В., Водолагина Н.Н., Малыгина Н.Н.
- "ID полиморфизм гена ангиотензинпревращающего фермента (ACE) и Таq 1 В полиморфизмагенабелка-переносчика эфиров холестерина (CETP) уякутов". Материалы конференции "Пожилой человек. Качество жзни ". Клиническая геронтология. М. 2005. N 9, C. 125.
- 5.Митина З.С., Мандрыгина Е.Л., Водолагина Н.Н. Гериатрические проблемы в клинической неврологии. //Руководство по Геронтологии. Под редакцией академика РАМН, профессора В.Н.Шабалина//. М. 2005. С. 346 358.
- 6. Костомарова И.В., Ефимова Л.Н., Водолагина Н.Н., Малыгина Н.А.
- Этнические особенности полиморфизма генов ангиотензинпревращающего фермента (ACE), липопротеинлипазы (LPL) и гена белка-переносчика эфиров холестерина (CETP)

- у пожилых больных ИБС и хронической ишемией мозга. Материалы III Всероссийской научно-практической конференции "Общество, государство и медицина для пожилых". М. 2006. С.56.
- 7. Малыгина Н.А., Водолагина Н.Н., Щербакова Н.Е., Мягчин П.С., Сидорова О.П. Генетика инсульта. Альманах "Геронтология и гериатрия". М. Выпуск 5. 2006. С. 48-56.
- 8. Малыгина Н.А., Водолагина Н.Н., Серова Л.Д. Генетические аспекты цереброваскулярных заболеваний. Материалы III Всероссийской научно-практической конференции "Общество, государство и медицина для пожилых". Тезисы докладов. М. 2007. С.69.
- 9. Malygina N.A., Vodolagina N.N., Serova L.D. "Genetics of stroke". //YI European Congress of Gerontology//. 2007, p. 140 141.
- 10. Водолагина Н.Н., Малыгина Н.Н., Сидорова О.П., Костомарова И.В., Серова Л.Д. Продолжительность жизни и гены липидного обмена у больных хронической ишемией мозга старших возрастных групп. Нижегородский медицинский журнал. Выпуск 6. 2007г. С. 12-18.
- 11. Костомарова И.В., Водолагина Н.Н., Малыгина Н.А., Митина З.С. Связь полиморфизма генов липопротеинлипазы и белка переносчика эфиров холестерина с продолжительностью жизни больных хронической ишемией мозга. Научно практический журнал "Клиническая медицина". М. Выпуск 4. 2008. С. 22 26.

Список сокращений

ГБ - гипертоническая болезнь

ГЛП - гиперлипидемия

ДЛП - дислипидемия

ИБС - ишемическая болезнь сердца

ИИ - ишемический инсультИМ - инфаркт миокарда

КТ - компьютерная томография.

ЛПВП - липопротеиды высокой плотности

LPL - липопротеинлипаза

ЛПНП - липопротеиды низкой плотности

ЛПОНП - липопротеиды очень низкой плотности

МАГ - магистральные артерии головы

МРТ - магнитно-резонансная томография.

МС - метаболический синдром

ОНМК - острое нарушение мозгового кровообращения

ОХС - общий холестерин

СЕТР - белок переносчик эфиров холестерина ССК - стабильная стенокардия напряжения

ТГ - триглицериды

УЗДГ - ультразвуковая допплерография. УЗИ - ультразвуковое исследование

ХИМ - хроническая ишемия головного мозга

ХС - холестерин

ЦВЗ - цереброваскулярные заболевания